Model for the conversion of nuclear waste melter feed to glass

نویسنده

  • Richard Pokorny
چکیده

The rate of batch-to-glass conversion is a primary concern for the vitrification of nuclear waste, as it directly influences the life cycle of the cleanup process. This study describes the development of an advanced model of the cold cap, which augments the previous model by further developments on the structure and the dynamics of the foam layer. The foam layer on the bottom of the cold cap consists of the primary foam, cavities, and the secondary foam, and forms an interface through which the heat is transferred to the cold cap. Other model enhancements include the behavior of intermediate crystalline phases and the dissolution of quartz particles. The model relates the melting rate to feed properties and melter conditions, such as the molten glass temperature, foaminess of the melt, or the heat fraction supplied to the cold cap from the plenum space. The model correctly predicts a 25% increase in melting rate when changing the alumina source in the melter feed from Al(OH)3 to AlO(OH). It is expected that this model will be incorporated in the full glass melter model as its integral component. 2013 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of bubbles and silica dissolution on melter feed rheology during conversion to glass.

Nuclear-waste melter feeds are slurry mixtures of wastes with glass-forming and glass-modifying additives (unless prefabricated frits are used), which are converted to molten glass in a continuous electrical glass-melting furnace. The feeds gradually become continuous glass-forming melts. Initially, the melts contain dissolving refractory feed constituents that are suspended together with numer...

متن کامل

Nuclear waste vitrification efficiency: Cold cap reactions

a r t i c l e i n f o Batch melting takes place within the cold cap, i.e., a batch layer floating on the surface of molten glass in a glass-melting furnace. The conversion of batch to glass consists of various chemical reactions, phase transitions , and diffusion-controlled processes. This study introduces a one-dimensional (1D) mathematical model of the cold cap that describes the batch-to-gla...

متن کامل

Conversion of nuclear waste into nuclear waste glass: Experimental investigation and mathematical modeling

The melter feed, slurry, or calcine charged on the top of a pool of molten glass forms a floating layer of reacting material called the cold cap. Between the cold-cap top, which is covered with boiling slurry, and its bottom, where bubbles separate it from molten glass, the temperature changes by up to 1000 K. The processes that occur over this temperature interval within the cold cap include l...

متن کامل

Toward Understanding the Effect of Low-Activity Waste Glass Composition on Sulfur Solubility

The concentration of sulfur in Hanford low-activity waste (LAW) glass melter feed will be maintained below the point where the salt accumulates on the melt surface. The allowable concentrations may range from near zero to over 2.05 wt% (of SO3 on a calcined oxide basis) depending on the composition of the melter feed and processing conditions. If the amount of sulfur exceeds the melt tolerance ...

متن کامل

Application of evolved gas analysis to cold-cap reactions of melter feeds for nuclear waste vitrification

In the vitrification of nuclear wastes, the melter feed (a mixture of nuclear waste and glass-forming and modifying additives) experiences multiple gas-evolving reactions in an electrical glass-melting furnace. We employed the thermogravimetry-gas chromatography–mass spectrometry (TGA-GC–MS) combination to perform evolved gas analysis (EGA). Along with identifying the gases evolved, we performe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013